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Highlights

• Cluster indicator is improvedassisted by prior knowledge for multi-view

data.

• Feature selectionhelps to select discriminative views and features in a view.

• Cluster indicator is a better embedding than an orthogonal embedding.

• Running time of our method is similar with that of the mainstream ap-

proaches.
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Abstract

Real world data are often represented by multiple distinct feature sets, and some

prior knowledge is provided, such as labels of some examples or pairwise con-

straints between several sample pairs. Accordingly, task of multi-view clustering

arises from a complex information aggregation of multiple sources of feature sets

and knowledge prior. In this paper, we propose to optimize the cluster indica-

tor, which representing the class labels is an intuitive reflection of the clustering

structure. Besides, the prior indicating the same level of semantics can be di-

rectly utilized guiding the learned clustering structure. Furthermore, feature

selection is embedded into the above process to select views and features in

each view, which leads to the most discriminative views and features chosen for

every single cluster. To these ends, an objective is accordingly proposed with an

efficient optimization strategy and convergence analysis. Extensive experiments

demonstrate that our model performs better than the state-of-the-art methods.

Keywords: Multi-view clustering, feature selection, prior information, cluster

indicator

1. Introduction

In real world, data are often represented by multiple distinct feature sets,

which are called multi-view data. For example, an image can be represented
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by SIFT and GIST descriptors, and a webpage can be described using images,

texts, videos and hyperlinks. Usually, by exploring complementary information5

of these multiple sources of information, multi-view clustering provides a bet-

ter way to discover intrinsical grouping patterns among data points than every

single view [1]. On the other hand, semi-supervised clustering techniques have

recently shown to substantially improve single view clustering by incorporat-

ing prior knowledge [2]. Such knowledge can be label information, e.g., partial10

examples have class labels, or pairwise constraint information, e.g., partial ob-

servations of whether two examples belong to the same cluster or not. More

recently, a few studies have been made by integrating the above semi-supervised

information for multi-view clustering and have obtained relatively good results

[3, 4, 5, 6].15

Generally, to solve the above problem, we confront two basic challenges.

The first one is how to learn from multiple feature sets to boost clustering

performance. Since different views may consist of heterogeneous feature sets

and they are of different importance for clustering, a suitable strategy should

well joint all the views. Typical methods usually learn a latent space, where20

different views can be compared to explore the complementary information [7,

8, 9]1. Besides, feature learning is always performed to select discriminative

views and features in each view [10]. Recently, some methods proposed to learn

the cluster indicator matrix (the cluster index of examples) as a latent space

[11, 12], which can well capture the data clustering structure. However, none25

of the above methods learn the clustering structure along with the views and

features selection, which is a non-trivial problem considering the model design

and optimization.

Another challenge is how to incorporate prior information, i.e., partial la-

bels or partial pairwise constraints, for better discovering grouping structure.30

To make use of the prior, some methods utilize such information to adjust

the learned new embeddings of multi-view features through soft constraints

1The code for [7] is available in https://github.com/singularity4/NonlinearOrthogonalNMF.
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[13, 14, 3]. For example, if two examples are from the same cluster, they usually

make the learned new features of the two examples be similar. Furthermore,

some algorithms just keep the prior knowledge fixed with hard constraints when35

performing clustering [15]. Overall, those methods discover the grouping struc-

ture by indirectly utilizing the prior knowledge, and we argue that we can di-

rectly use such high level semantics to enhance learning of the grouping struc-

ture, which will be more effective.

To alleviate the above problems, a novel clustering method is proposed based40

on joint feature selection and partially constrained cluster label learning. The

cluster indicator, which serves as an intuitive reflection of clustering labels, is

optimized. The learned representation can be directly applied for clustering

without relying on computationally expensive spectral clustering step. Besides,

prior knowledge, as the same high-level semantics with the clustering labels,45

can be utilized to adjust the learned clustering structure. Furthermore, feature

selection and view selection can be embedded into the above learning process

in a relatively simple manner, from which discriminative views and features are

selected for every single cluster. Finally, an overall objective consisting of all

above parts is developed, and an efficient optimization strategy is designed with50

rigorous convergence analysis.

The main contributions are listed as follows: 1) We joint data clustering

structure learning, feature selection (discriminative features in a view and im-

portance of different views) and different kinds of prior knowledge learning into a

unified objective for multi-view clustering. The learned low dimensional embed-55

ding can be directly utilized for clustering without relying on computationally

expensive spectral clustering. 2) We propose an efficient algorithm to optimize

the above objective, which is ingenious considering the mixture of complete and

partial constraints due to the regularizer encoding the prior. Besides, conver-

gence is guaranteed via theoretical analysis. 3) We conduct experiments on four60

public databases with five widely used metrics, achieving the state-of-the-art

clustering results.
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2. Related work

To explore complementary information between different views, plenty of

promising multi-view clustering approaches have been developed [16, 17, 18,65

19]. Generally, those methods can be classified into four categories based on

when to use multiple sources of information. [20, 21, 22]. Subspace based

ones learn a unified embedding of multiple views relying on techniques such

as probabilistic approach, matrix factorization, spectral analysis and canonical

correlation analysis [23, 24, 25, 10, 12, 26, 24, 1]. Co-training and Co-EM based70

methods just use multiple sources of information in the clustering process with

typical examples such as [27, 28, 15, 29]. Late fusion based ones integrate the

clustering results from each view through voting or other strategies [30, 31, 32].

And the last type of methods just learn a unified similarity matrix, which serves

as an affinity matrix for spectral clustering [33, 34, 35, 36, 37, 38]. Some recently75

proposed methods [39, 33, 35, 40, 41]2 are extensions of typical single view

subspace segmentation approaches.

For most multi-view clustering approaches, subspace-based ones, which rely

on various kinds of techniques for a low dimensional embedding learning, are

widely studied. Those methods are easy to be explained and have the advantage80

to reduce dimensionality of original data. Co-training and Co-EM frameworks

are conventionally designed for semi-supervised classification, which need strong

assumptions [21] , such as sufficiency, compatibility and conditional indepen-

dence, for their success. If the above conditions are not satisfied, clustering

performance will be harmed. Late fusion based approaches obtain clustering85

through a decision-level fusion, which are direct and heavily rely on single view

clustering results. Methods for unified similarity matrix learning are similar

with multiple kernel learning. Similarities between data need to be calculated,

whose computation cost is high, and the final representation becomes more vo-

luminous with the increasing data size. With the comparison between different90

2Authors in [40] provide codes for readers’ reference.
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kinds of approaches, we base our method on subspace learning.

One the other hand, due to convenience of obtaining partial label or pairwise

constraint information, semi-supervised multi-view clustering has significantly

boosted the performance by embedding such prior knowledge [13, 42, 15, 3, 43,

44]. The most popular kinds of methods use prior information to guide learning95

of new embedding for multiple views [4, 13, 45]. For example, Liu et al. [4] pro-

posed a sparse regression model to project the learned embedding to the known

class labels. Tang [46] developed a simple constraint to enforce the embedding

of must-linked pairs to be similar and cannot-linked pairs to be far away. Some

methods fix the semi-supervised information when performing multi-view clus-100

tering or just propagate the prior knowledge. For example, several kernel or

canonical correlation analysis based methods use partial pairwise constraints or

label information to modify the kernel matrix or covariance matrix [47, 48], and

some methods [44] aim to propagate the prior information in a co-EM based

style.105

To the best of our knowledge, none of above clustering methods can merge

clustering labels learning, views and features selection, and prior knowledge

learning into one objective, which is our aim in this paper. Note Wang et al.

[10] propose to learn an orthogonal subspace with views and features selection.

However, our learned latent subspace is different with theirs due to their lacking110

of nonnegative constraints, and we show the effectiveness of this part in the

experimental results (Figures 2 and 3). Besides, method proposed in [10] cannot

deal with semi-supervised setting, and accordingly they cannot utilize prior

knowledge in the same way as ours. Finally, with the non-negative, orthogonal

and partially constrained conditions, optimizing our objective and guaranteeing115

the convergence is much harder.

3. Model

Let Xl = [xl
1,x

l
2, ...,x

l
n] ∈ <dl×n denote feature matrix of the l-th view for n

data samples, where dl is the dimensionality. Then we have X = [x1,x2, ...,xn] ∈

6
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<d×n representing the whole dataset of total m views, where d =
∑m

l=1 dl is the120

total dimensionality. Furthermore, we are given prior information, i.e., partial

labels or partial pairwise constraints. Our goal is to conduct clustering based

on all above information. More specifically, we design an objective to jointly

consider clustering structure learning, feature selection and prior knowledge

learning, which will be elaborated in the following subsections.125

3.1. Cluster Label Learning

Given the dataset X, we construct F ∈ <n×c to be the cluster indicator

matrix with the assumption that each data point belongs to only one of the c

classes. Then we have F(i, j) = 1 if xi belongs to class j, otherwise F(i, j) = 0.

According to the definition of F, its structure satisfies the following constraints:

F ∈ {0, 1}n×c, F1c = 1n (1)

where 1c and 1n are c and n dimensional vectors with their values all being one.

To obtain such an F, we use a regression like method to project the original

feature matrix to the cluster indicator matrix [10]. By doing so, we can conduct

feature learning in a simple manner that will be elaborated later. Then, the

optimization of F and other variables are written as:

min
W,F,b

||XTW + 1nbT − F||2F
s.t. F ∈ {0, 1}n×c, F1k = 1n

(2)

where W is the projection matrix, b is the intercept vector, which is necessary

for minimization of the regression loss as in [10, 49].

3.2. Encoding prior knowledge

We show how to incorporate prior knowledge, i.e., partial labels or partial130

pairwise constraints, into the above optimization problem. Without loss of gen-

erality, we use [yl,yu] = {1, ..., c, ?}n×1 to indicate known labels and unknown

labels of data, where yl = {1, ..., c}nl×1 denotes nl labeled points. As for par-

tial pairwise constraints, we use Y = {1,−1, ?}n×n to indicate two examples

7
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Figure 1: Process of using prior knowledge to design regularizers on the leaned pseudo-class

label matrix (F). The middle column indicates the ideal structure of F based on the prior,

and the right column represents structure of the designed index matrix for constructing the

regularizers.

belonging to the same cluster, to different clusters and unknown relation, re-135

spectively. Overall, above prior knowledge reflects group structure of partial

data. For example, partial labels provide cluster index of data and partial pair-

wise constraints give true relation between two examples. Since our model aims

to obtain the similar group structure of data, i.e., the cluster indicator matrix,

we utilize prior knowledge to guide learning of F through a regularizer ϕ(F). As140

for different prior knowledge, the regularizers are encoded in a sightly different

manner, which are elaborated in the following subsections.

3.2.1. Partial labels

We divide F into Fl and Fu corresponding to the labeled and unlabeled

parts of data. Then the construction of the pseudo-class label matrix based on

partial labels is illustrated in the bottom of Figure 1. Suppose xi is labeled and

belongs to the k-th cluster, then Fl(i, :), namely the i-th row of Fl, should satisfy

that the k-th element is large and other elements are zeros. To achieve this, we

introduce an index matrix Il with size of m × c corresponding to numbers of

8
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labeled data and total clusters, and it is defined as: if xi belongs to the k-th

cluster, Il(i, k) = 0, otherwise Il(i, k) = 1. Then the regularizer is formulated

as:

ϕ(F) = ||Il � Fl||2F (3)

where � is element-wise product.

Using Equation 3, if xi belongs to the k-th cluster, we make no punishment145

to Fl(i, k), and for the other positions of Fl(i, :), we give a penalty if the value is

not zero. Noting non-negative constraint is imposed on F, so no negative values

are allowed for F to reduce the objective of Equation 3. Since we are given no

prior for Fu, no regularizer is utilized for this part.

3.2.2. Partial pairwise constraints150

Suppose the cluster indicator matrix is known, we can easily obtain the

relation between any two examples through FFT . For example, given the true

relation between xi and xj , and if the two data samples belong to the same

cluster, the (i, j)-th element of FFT should be large, otherwise zero. Then the

regularizer imposed on F based on partial pairwise constraints is illustrated

in the upper of Figure 1. We bring in an index matrix Ip ∈ <n×n and it is

defined as: if xi and xj belong to the same cluster, Ip(i, j) = −1, and if they

belong to different clusters, Ip(i, j) = 1, otherwise zeros. Then the regularizer

is formulated as:

ϕ(F) =
∑

ij
(Ip � (FFT )) (4)

where � is element-wise product.

Once xi and xj belong to the same cluster, we give a negative weight to

make FFT (i, j) be large so as to reduce the loss, and if they belong to different

clusters, a penalty is given when FFT (i, j) does not equal to zero. As for

unknown relation, no regularizer is given.155

3.3. Feature selection

W is a learned projection matrix for all the views, which is specified as

W = [w1
1, ...,w

1
c ; ... ; wm

1 , ...,w
m
c ] ∈ <d×c, and wq

p is the weights of features

9
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in the q-th view for the p-th cluster. Generally, different views play distinct

roles for different clusters, for example, for image clustering based on color and

textural features, the former one is important for clusters such as “tree” and

“sky” and the latter one is more suitable for clusters such as “buildings”. So

we use a group `1-norm (G1-norm) imposed on wq
p to select relevant views for

each cluster as did in [10], and it is defined as:

||W||G1 =
∑c

p=1

∑m

q=1
||wq

p||2 (5)

Furthermore, even though some views are important for a cluster, there will still

be features of these views that are noisy or redundant, and even if most features

of a view are not discriminative for most clusters, a small number of features

may still be highly discriminative. So a widely used `21-norm constraint is also

imposed on W as did in [50, 10] to select relevant features in each view and it

is defined as:

||W||21 =
∑n

i=1
||wi||2 (6)

where wi is the ith row of W. Adding the above two constraints, we have:

φ(W) = ||W||G1 + ||W||21 (7)

Finally, adding all parts, we obtain the objectives

min
F,W,b

||XTW + 1nbT − F||2F + λ1||W||G1
+ λ2||W||21 + λ3||Il � Fl||2F

s.t. F ∈ {0, 1}n×c, F1k = 1n

(8)

min
F,W,b

||XTW + 1nbT − F||2F + λ1||W||G1 + λ2||W||21 + λ3
∑

ij(Ip � (FFT ))

s.t. F ∈ {0, 1}n×c, F1k = 1n

(9)

for partial labels and pairwise constraints, respectively. λ1, λ2 and λ3 are pa-

rameters balancing different terms.

4. Optimization and analysis

4.1. Optimization160

Since all the variables are coupled together, it may be difficult to optimize

them at the same time. Hence, we propose an alternating optimization strategy

10
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to find a local solution of Equations 8 and 9.

4.1.1. Updating the cluster indicator matrix

F is mixed with integer programming and partial constraint, which makes

the problem difficult to be solved. Similar to previous studies [12], we firstly

relax them to:

FTF = I, F ≥ 0 (10)

where the orthogonal and nonnegative constraints guarantee that there is one165

positive value in each row of F and others are zeros. Then, we optimize F under

Equation 10 along with partial regularization encoding the prior.

• For partial pairwise constraints:

The objective becomes

minF||XTW + 1nbT − F||2F + λ3
∑

ij(Ip � (FFT ))

s.t. FTF = I, F ≥ 0
(11)

The Lagrangian function of the above function is:

L(F) = Tr(FT IpF) + Tr(Γ(FTF− I))

+1/λ3Tr(−2(XTW + 1nbT )TF + FTF)− Tr(ΛF)
(12)

where Λ and Γ are Lagrangian multipliers. Using the KKT condition, namely

Λ(i, j)F(i, j) = 0, we have:

(IpF + 1/λ3(−XTW − 1nbT + F) + FΓ)(i, j)F(i, j) = 0 (13)

and the updating rule for F is:

F(i, j) = F(i, j)

√
(I−p F + γZ+ + FΓ−)(i, j)

(I+p F + γ(Z− + F) + FΓ+)(i, j)
(14)

where γ = 1/λ3, Z = XTW + 1nbT and for a matrix B, B+(i, j) = (|B(i, j)|+
B(i, j))/2 and B−(i, j) = (|B(i, j)| −B(i, j))/2.170

In Equation 13, summing over i, we have Γ(i, i) = (γ(FTZ−I)−FT IpF)(i, i),

and the off-diagonal elements are approximated by deleting the non-negative

of F, which results in Γ(i, j) = (γ(FTZ − I) − FT IpF)(i, j). In summary,

Γ = γ(FTZ− I)− FT IpF.

11
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• For partial labels:175

The objective becomes:

minF||XTW + 1nbT − F||2F + λ3||Il � Fl||2F
s.t. FTF = I, F ≥ 0

(15)

We divide F into two parts, i.e., Fl and Fu, corresponding to parts of the labeled

and unlabeled data respectively. Then the problem is relaxed as:

min
Fl

||XTW + 1lb
T
l − Fl||2F + λ3||Il � Fl||2F , s.t.Fl ≥ 0 (16)

min
Fu

||XTW + 1ubT
u − Fu||2F , s.t. FT

uFu = I,Fu ≥ 0 (17)

As for Equation 16, by using the penalty λ3||Il�Fl||22 and the constraint Fl ≥ 0,

we can approximate the condition in Equation 10 that there is only one positive

value of each row in Fl. Then Equation 16 is solved by taking derivative of Fl:

Fl = max((XTW + 1nbT )./(λ3Il + 1),0) (18)

As for Equation 17, we use FT
uFu = I,Fu ≥ 0 to constrain the structure of

Fu. Even though it may be wrong when the unlabeled data do not contain all

classes, we ignore this slight influence because the percentage of labeled data

is usually small. In turn, it makes our optimization very compact. Then the

solution can be obtained by ignoring the part of regularizer in Equation 14 when180

compared with Equation 11.

4.1.2. Updating the projection matrix and intercept vector

The objective for updating W is written as:

min
W
||XTW + 1nbT − F||2F + λ1||W||G1 + λ2||W||21 (19)

Taking the derivative of the above objective with respect to the kth column of

W, i.e., wk, and set it to zero, we have3:

XXTwk −X(fk − 1nbk) + λ1Pkwk + λ2Qwk = 0 (20)

3When ||wi
k||2 = 0 or ||wi||2 = 0, a small perturbation is added as in [51].

12
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where fk is the k-th column of F. Pk is a block diagonal matrix with its i-th

diagonal block being all 1
2||wi

k||2
, which corresponds to weights of the i-th view

to k-th cluster. Q is a diagonal matrix with its i-th diagonal element being

1
2||wi||2 , which corresponds to the weights of the i-th feature in X to all clusters.

Based on above equation, we have:

wk = (XXT + λ1Pk + λ2Q)−1(X(fk − 1nbk)) (21)

In the solution, Pk and Q are dependent on W, and an iterative solution is

proposed to solve Pk, Q and wk.

Finally b is obtained as:

b = (F−XTW)
T
1n/n (22)

The overall solution of our model is summarized in Algorithm 1. After185

obtaining the cluster indicator matrix, we can directly obtain clustering results

by regarding the largest value of each row as cluster labels, or use the kmeans

algorithm imposed on F for final results.

4.2. Convergence analysis

Since the intercept vector b is calculated through analytic solution, we just190

elaborate the convergence for W and F, respectively.

4.2.1. Convergence for the cluster indicator matrix

Since Equations 17 and 11 have similar optimization strategies, we just an-

alyze the updating rule for Equation 11. Let

H(F) = Tr(FT IpF + Γ(FTF− I) + γ(−2ZTF + FTF)) (23)

where γ = 1/λ3, Z = XTW + 1nbT , and the function is further rewritten as:

H(F) = Tr(FT I+p F + 2γZ−FT + γFTF + Γ+FTF)

−Tr(FT I−p F + 2γZ+FT + Γ−FTF)
(24)

13
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Algorithm 1 Optimization strategy for Equations (8) and (9)

Input:

1: Multi-view dataset X ∈ <d×n; Semi-supervised information; Parameters λ1,

λ2 and λ3.

2: Initialize W, b and F uniformly from (−1,+1).

3: while not converge do

4: Calculate diagonal matrices Pk(k = 1, ..., c) and Q;

5: Calculate each column of W using Equation (21);

6: Calculate b using Equation (22);

7: if Given partial labels then

8: Calculate F using Equations (16) and (17);

9: else if Given partial pairwise constraints then

10: Calculate F using Equations (11);

11: end if

12: end while

Output:

13: Approximated pseudo-class label matrix of dataset X.

Based on the auxiliary function approach [52, 12], we can derive that the fol-

lowing function h(F, F̃)

h(F, F̃) =
∑
ij

( (F̃Γ+)(i,j)F2(i,j)

F̃(i,j)
+

(I+p F̃)(i,j)F2(i,j)

F̃(i,j)
)

+
∑
ij

γ(Z−(i, j)F2(i,j)+F̃
2
(i,j)

F̃(i,j)
+ F̃(i,j)+F2(i,j)

F̃(i,j)
)

−∑
ij

2γZ(i, j)F̃(i, j)(1 + log F(i,j)

F̃(i,j)
)

−∑
ijl

Γ−(j, l)F̃(i, j)F̃(i, l)(1 + log F(i,j)F(i,l)

F̃(i,j)F̃(i,l)
)

−∑
ijl

I−p (j, l)F̃(j, i)F̃(l, i)(1 + log F(j,i)F(l,i)

F̃(j,i)F̃(l,i)
)

(25)

is an auxiliary function of H(F), which is convex with its minimum being Equa-

tion 14. Besides, H(F) is the Lagrangian function of Equation 11 with the KKT

condition. Then we have the following inequality chain:

H(F0) = h(F0,F0) ≥ h(F0,F1) ≥ H(F1)... (26)

14
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which means the updating rule for F can monotonically decrease the objective

function.

4.2.2. Convergence for the projection matrix195

Based on Equation 21, we can derive that:

W(t+1) = min
W
||XTW + 1nbT − F||2F + λ1

c∑

k=1

wT
k Pkwk+λ2W

TQW (27)

and then we have:

Lt+1 + λ1
∑c

k=1 (wt+1
k )

T
Pt+1

k wt+1
k + λ2(Wt+1)TQWt+1

≤ Lt + λ1
∑c

k=1 (wt
k)

T
Pt+1

k wt
k + λ2(Wt)TQWt

(28)

where Lt = ||XTWt + 1nbT − F||2F . By substituting matrices P and Q, we

have:

Lt+1 + λ1
c∑

k=1

m∑
i=1

||(wi
k)

t+1||2
2||(wi

k)
t|| + λ2

d∑
i=1

||(wi)
t+1||2

2||(wi)t||

≤ Lt + λ1
c∑

k=1

m∑
i=1

||(wi
k)

t||2
2||(wi

k)
t|| + λ2

d∑
i=1

||(wi)
t||2

2||(wi)t||

(29)

Note that it can be verified that for a function f(x) = x − 0.5x2/a (a >

0), given any x 6= a, f(x) ≤ f(a) holds. Then we take (x, a) pairs being

(||(wi
k)t+1||2, ||(wi

k)t||2) and (||(wi)t+1||2, ||(wi)t||2) and add the obtained two

inequations to the above inequation. Finally, we can obtain:

Lt+1 + λ1
c∑

k=1

m∑
i=1

||(wi
k)

t+1||2 + λ2
d∑

i=1

||(wi)
t+1||2

≤ Lt + λ1
c∑

k=1

m∑
i=1

||(wi
k)

t||2 + λ2
d∑

i=1

||(wi)
t||2

(30)

which means the updating rule for W can monotonically decrease the objective

function.

4.3. Complexity analysis

In Algorithm 1, as for F, the main computation consists of some matrix

multiplication like in Equations (14) and (18). As for W, we need to solve200

wk(k = 1, ..., c) as described in Equation (21), which solves an inverse problem

of cubic complexity [10]. Instead, we can update wk by solving a linear system

for about O(cd2) complexity with c and d being the number of clusters and the

dimensionality of X respectively.
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5. Experiments205

5.1. Datasets and settings

We report results on four public datasets, i.e., USPS4, Pascal VOC 20075

(VOC), MIR-Flickr6 (MIR) and 3Source7 datasets. Those databases have di-

verse views, and are widely used for multi-view clustering. Their characteristics

are illustrated below.210

USPS dataset consists of features of handwritten numerals and there are

2,000 examples uniformly distributed in 10 categories. Three types of features,

i.e., the fourier coefficients, profile correlations and zernike moments, are used.

VOC dataset consists of a total of 9,963 images divided into twenty cate-

gories and two types of features, i.e., the tag feature (one-hot representation)215

and color feature are utilized.

MIR dataset is crawled from Flickr and contains images of 38 classes. Here

a subset with five categories about 23,691 images are used with two types of

features, i.e., edge histogram and homogenous texture descriptors. Finally, for

datasets with multiple labels, we just remove those examples.220

3Source dataset is constructed using three online news sources, i.e., BBC,

Reuters and the Guardian. In this dataset, 169 news are reported by all the

three sources, which are used with each source serving as a view. As for the

representation of news, word frequency feature is utilized.

To mimic the two kinds of prior information, we randomly select partial225

examples with labels and also use this to construct the pairwise constraints.

As for the competing approaches, we compare our method with the following

typical multi-view and semi-supervised multi-view clustering algorithms.

SULF [42] and PSLF [4] are competing methods using partial labels, which

add soft constrains of regression error between the samples and their class labels.230

4http://archive.ics.uci.edu/ml/datasets/Multiple+Features
5http://pascallin.ecs.soton.ac.uk/challenges/VOC/
6http://www.cs.toronto.edu/ nitish/multimodal/index.html
7http://mlg.ucd.ie/datasets/3sources.html
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SCCA [48], PSC and CSC [24] are the ones utilizing pairwise constraints.

Those methods use hard constraints to guide the construction of affinity matrix,

and then rely on spectral clustering for multi-view clustering.

OurP, OurL are our proposed methods handling partial labels and pairwise

constraints, respectively. Besides, SinP, SinL are simple baselines that use one235

view for clustering without feature learning. ConP, ConL are another baselines

that concatenate all the views for clustering without feature selection.

For methods SULF and PSLF, we use the codes released by their authors to

achieve the best performance. We revise SCCA, PSC and CSC based on codes

of their original vision to obtain the semi-supervised clustering results. For240

our method, we empirically adjust the parameters to obtain the best results,

and their influence for the performance are discussed in the following section.

To alleviate variance caused by the sampling of labels, all the experiments are

run ten times with different sampling, and the average are reported. Finally,

following [28, 4], Accuracy (ACC), F-score (F1), normalized mutual information245

(NMI), average entropy, and adjusted rand index are utilized for performance

evaluation. For these measures, the higher values represent better performance,

except for the average entropy.

5.2. Experimental results

We test all the methods with the labeled example ratios (LER) being 10%,250

20% and 30%, respectively, and the results on the USPS, VOC, MIR and 3Source

datasets are shown in Tables 1, 2, 3 and 4, respectively. As a baseline, all the

methods without using semi-supervised information are also reported. Overall,

it can be seen that our proposed methods, whether based on partial label in-

formation or partial pairwise constraint information, achieve relatively better255

clustering results.

From the tables, with increasing number of labeled examples, performances

of most methods are improved, which show the effectiveness of prior information

for multi-view clustering. However, some methods may confront performance

degradation with more labels, e.g. PSC and CSC. The main reason lies behind is260
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Table 1: Clstering results on the USPS datasets.

ACC

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 73.07 78.88 83.2 52.46 57.27 42.62 42.62 34.50 34.50 85.18 85.18

0.1 76.18 76.36 84.45 62.89 79.51 57.78 50.11 83.71 51.57 93.00 87.03

0.2 74.89 74.15 80.37 69.76 81.23 61.21 46.65 92.85 61.91 94.50 87.98

0.3 70.47 69.39 83.59 66.67 84.03 61.79 60.44 94.07 71.87 94.55 92.18

NMI

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 71.54 73.73 74.38 44.09 44.89 34.18 34.18 30.86 30.86 75.61 75.61

0.1 72.97 76.35 77.46 61.89 73.56 45.95 40.08 78.23 48.70 86.89 78.06

0.2 72.74 77.04 79.07 66.33 75.39 50.10 42.91 86.98 60.19 88.69 78.50

0.3 70.81 74.89 80.58 66.11 77.63 53.98 54.52 89.19 73.48 88.07 91.71

F-score

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 65.17 69.92 72.15 40.17 42.58 29.15 29.15 22.06 22.06 74.14 74.14

0.1 67.11 70.94 75.41 54.68 70.43 40.65 33.07 66.46 28.41 86.79 76.96

0.2 67.23 70.64 74.14 59.61 72.17 45.71 31.79 85.98 37.41 89.41 78.17

0.3 63.50 66.44 76.77 59.49 75.69 46.50 43.60 88.06 55.45 89.45 89.75

Adjusted Rand Index

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 61.15 66.49 69.05 33.38 36.16 20.29 20.29 7.52 7.52 71.26 71.26

0.1 63.40 67.53 72.64 49.30 66.99 33.59 33.59 62.29 16.03 85.32 74.41

0.2 63.47 67.07 71.04 54.85 69.06 39.30 39.30 84.41 27.30 88.24 75.74

0.3 59.11 62.31 74.07 54.59 72.90 39.87 39.87 86.72 48.98 88.28 88.54

Average Entropy

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 0.97 0.89 0.85 1.86 1.83 2.22 2.22 2.49 2.49 0.82 0.82

0.1 0.91 0.82 0.76 1.30 0.90 1.82 2.03 0.78 1.90 0.44 0.73

0.2 0.92 0.82 0.74 1.15 0.82 1.68 1.96 0.44 1.50 0.38 0.72

0.3 1.00 0.90 0.67 1.17 0.76 1.57 1.56 0.37 1.04 0.40 0.30
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Table 2: Clstering results on the VOC datasets.

ACC

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 27.92 55.90 51.37 53.22 53.88 50.44 50.44 53.92 53.92 65.77 65.77

0.1 27.88 53.61 54.74 59.71 61.61 53.43 53.98 58.23 53.48 68.90 63.86

0.2 26.58 55.12 56.21 62.32 62.23 57.01 55.10 64.00 56.68 70.85 67.46

0.3 28.99 54.14 51.91 64.48 64.48 57.27 46.31 69.59 61.67 72.39 69.18

NMI

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 22.05 53.88 50.61 51.80 52.46 48.78 48.78 53.60 53.60 66.43 66.43

0.1 20.87 56.25 55.41 58.09 55.95 61.68 63.86 60.10 52.71 70.98 66.99

0.2 19.49 62.00 62.68 32.79 60.57 57.69 56.10 62.58 56.58 72.4 64.73

0.3 20.87 64.99 63.11 65.82 63.85 61.27 46.04 70.48 61.78 73.90 68.64

F-score

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 20.24 44.81 41.97 42.05 42.04 32.34 32.34 33.93 33.93 57.40 57.40

0.1 19.91 43.96 44.28 49.47 49.47 38.17 46.65 37.75 36.23 62.66 57.91

0.2 19.21 48.05 48.76 50.70 50.70 38.34 41.59 42.79 39.06 65.05 56.77

0.3 21.04 47.96 45.64 56.54 56.54 40.77 21.04 48.60 43.08 67.45 63.2

Adjusted Rand Index

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 12.95 40.78 37.70 37.38 36.77 24.04 24.04 24.72 24.72 53.42 53.42

0.1 12.10 39.47 40.04 45.45 46.88 29.88 41.36 29.39 28.26 59.43 54.31

0.2 10.74 43.93 44.73 46.47 48.44 31.39 34.88 35.53 31.32 61.87 53.14

0.3 13.03 43.71 41.04 53.07 53.12 33.42 21.27 42.10 35.74 64.52 59.95

Average Entropy

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 3.05 1.71 1.84 1.82 1.83 2.11 2.11 2.03 2.03 1.32 1.32

0.1 3.11 1.65 1.66 1.56 1.67 1.71 1.44 1.82 2.00 1.10 1.25

0.2 3.18 1.42 1.38 1.38 1.51 1.74 1.81 1.67 1.87 1.08 1.33

0.3 3.11 1.30 1.39 1.26 1.37 1.67 2.24 1.37 1.69 1.02 1.20
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Table 3: Clstering results on the MIR datasets.

ACC

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 30.92 26.84 26.95 27.90 30.79 32.25 32.25 30.93 30.93 32.66 33.66

0.1 28.37 28.36 28.55 29.53 33.44 31.66 28.15 40.74 30.53 45.45 35.08

0.2 25.93 33.01 28.67 43.43 42.39 40.51 31.53 45.37 38.32 51.41 41.52

0.3 24.55 43.35 42.88 48.04 48.49 41.34 33.47 48.37 39.94 52.95 45.96

NMI

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 5.59 4.33 4.26 3.98 4.86 3.19 3.19 3.82 3.82 7.10 7.10

0.1 2.89 6.01 4.52 6.82 8.07 4.27 5.22 8.88 6.45 11.93 9.53

0.2 1.78 10.79 5.35 12.03 17.00 5.62 8.92 11.28 7.64 17.35 18.01

0.3 1.15 19.73 19.84 18.64 18.88 9.35 11.76 15.23 8.17 17.80 26.08

F-score

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 25.96 24.03 24.03 24.40 24.80 27.24 27.24 25.13 25.13 28.39 28.39

0.1 23.89 26.17 24.57 29.32 29.80 25.60 27.26 28.47 27.85 31.11 35.08

0.2 23.12 27.56 25.36 34.58 35.40 33.51 29.76 30.64 29.40 34.60 37.05

0.3 22.88 30.58 30.77 35.91 35.42 31.77 30.44 32.90 31.33 36.40 38.20

Adjusted Rand Index

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 3.36 1.90 1.86 1.86 2.66 3.45 3.45 2.41 2.41 4.35 4.35

0.1 1.85 1.46 2.74 2.06 3.04 3.06 1.00 6.52 2.17 9.57 3.22

0.2 1.08 3.20 2.14 6.59 6.46 5.94 2.16 9.65 7.21 14.82 6.63

0.3 0.57 8.27 8.52 12.16 12.21 6.17 2.37 12.12 8.32 16.12 8.77

Average Entropy

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 2.03 2.06 2.06 2.07 2.05 2.09 2.09 2.00 2.00 2.00 2.00

0.1 2.09 2.03 2.05 2.02 1.99 2.06 2.05 1.96 2.02 1.89 1.99

0.2 2.11 1.93 2.04 1.92 1.86 2.04 1.98 1.91 1.98 1.77 1.83

0.3 2.13 1.73 1.73 1.77 1.76 1.96 1.92 1.82 1.88 1.75 1.67
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Table 4: Clstering results on the 3Source datasets.

ACC

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 34.44 56.45 58.11 53.25 56.81 56.45 56.45 55.50 55.50 68.88 68.88

0.1 34.32 67.57 67.57 68.16 68.76 65.68 62.60 68.75 59.53 70.89 75.15

0.2 34.44 56.33 57.99 62.96 66.75 69.11 70.41 66.63 66.51 72.43 72.07

0.3 35.15 43.43 44.62 67.21 76.87 73.49 73.73 73.25 74.56 79.17 77.04

NMI

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 13.78 59.41 61.12 51.29 56.00 54.33 54.33 52.52 52.52 58.09 58.09

0.1 10.26 59.64 59.54 62.17 61.55 58.45 60.75 57.35 60.75 62.97 64.26

0.2 8.21 50.94 53.08 59.56 61.64 60.08 61.62 60.80 62.47 62.74 68.94

0.3 7.34 34.25 35.94 65.16 66.37 65.24 64.16 64.87 66.31 65.48 66.97

F-score

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 30.46 54.54 56.29 48.62 54.75 53.09 53.09 50.48 50.48 61.63 61.63

0.1 36.97 65.97 67.20 65.01 65.37 66.42 62.57 55.70 58.82 68.96 69.72

0.2 36.33 53.80 56.44 60.49 63.54 61.74 64.52 64.60 66.01 66.17 68.56

0.3 36.59 35.95 37.18 61.28 74.42 72.46 71.41 68.06 67.23 75.23 71.81

Adjusted Rand Index

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 6.01 42.79 44.58 35.50 42.04 40.74 40.74 35.70 35.70 51.00 51.00

0.1 3.81 55.86 56.82 55.80 55.89 57.00 51.89 42.17 48.57 59.13 61.29

0.2 1.79 38.90 43.01 49.84 53.55 50.01 55.17 54.28 55.13 55.45 60.15

0.3 1.83 5.81 6.78 53.90 66.86 63.62 62.88 58.65 57.26 67.15 64.01

Average Entropy

ratio SCCA PSC CSC SULF PSLF SinP SinL ConP ConL OurP OurL

0 1.96 0.88 0.84 1.07 0.98 1.00 1.00 1.09 1.09 0.94 0.94

0.1 2.05 0.93 0.97 0.82 0.85 0.94 0.90 0.98 0.83 0.90 0.80

0.2 2.04 1.16 1.07 0.89 0.85 0.93 0.87 0.89 0.85 0.91 0.70

0.3 2.12 1.64 1.61 0.81 0.80 0.86 0.83 0.79 0.75 0.85 0.74
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the unreasonable utilization of the prior information. For example, the guiding

of affinity matrix construction maybe harmed due to the mixture of labels and

the calculated similarities.

SULF and PSLF utilize non-negative matrix factorization for the latent rep-

resentation learning, and the partial label information is used to guide learning265

of the learned latent representation through a regression loss. Compared with

them, we can directly punish the difference between the true label and the

cluster indicator, and it is more direct and effective. Besides, feature selection

is implemented to improve clustering performance. So, our proposed method

outperforms SULF and PSLF.270

Compared with SemiCCA, PairwiseSC and CentroidSC that use pairwise

constraint information to guide the construction of the kernel matrix or co-

variance matrix, we increase the loss if the observed pairwise constraints are

different between the one directly constructed from the cluster indicator, and it

is more useful.275

SinP and SinL achieve clustering through a view that obtains the best per-

formance among all views. Compared with them, we utilize all the views, and

accordingly complementarity among views are explored. This further proves the

usefulness of utilizing multiple views for clustering.

ConP and ConL concatenate all views and cluster data without feature learn-280

ing. Compared with them, view selection and feature selection in each view are

performed, and accordingly more discriminative features are utilized. This vali-

dates that feature selection is necessary for clustering multiple low level features.

OurP and OurL use partial labels and pairwise constraints as prior infor-

mation, respectively. From the tables, we observe that neither of them achieves285

the best clustering performance among all the datasets. So, given partial labels,

we can change the prior to pairwise constraint, and compare their performance

on the validation set before the future testing.

Next, we compare our model with [10], which learns an orthogonal subspace

to approximate the cluster labels. Since [10] cannot deal with semi-supervised290

information, we ignore such prior knowledge with our method denoted as Mul-
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Figure 2: performance of MultiFL vs. MultiSS.

Figure 3: Visualization of MultiSS and MultiFL.

tiFL and [10] as MultiSS. The comparison results on the four datasets are shown

in Figure 2. It can be seen that our method learns better cluster labels, and thus

our method outperforms MultiSS. Furthermore, to clearly illustrate the learned

cluster labels, we visualize them on the USPS dataset, and the results are shown295

in Figure 3. From the figure, the cluster structure learned by our method is ob-

viously better than that of MultiSS, which further shows the effectiveness of our

proposed method.

5.3. Convergence analysis

In previous sections, we prove the convergence of our proposed optimization300

method. In this section, we give the convergence and NMI curves on the USPS
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dataset with 10% labeled samples. Due to space limitation, we have conducted

our experiments on this database, and it is possible that similar results would

be obtained with other datasets. From Figure 4, the objectives in Equations

(8) and (9) decrease with the increasing number of iterations, and the NMI305

results become better until no big changes. The results further illustrate the

convergence of the proposed optimization approach.
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Figure 4: Convergence and NMI with varying iterations.

5.4. Running time

100101102
60

65

70

75

80

85

90

95
USPS dataset

Runing time (sec)

N
M
I
 
%

100101102
60

65

70

75
VOC dataset

Runing time (sec)

N
M
I
 
%

OurL OurP

CSC

PSLF

PSC

SULF

OurL

OurP

CSC

PSLF
PSC

SULF

Figure 5: Running time on the USPS and VOC datasets.

In this section, we show the running time for obtaining the embeddings on

the USPS and VOC datasets, where all the methods are run on the same machine310

(Intel CPU 3.1GHz and 12 GB memory). Besides, The publicly available codes
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of all the methods, compared here, are written in MATLAB. From Figure 5,

we can see that OurP and OurL obtain the best results, and the time used for

obtaining an embedding is in the same magnitudes with the mainstream partial

label based and pairwise constraints based methods, respectively.315

Implementation of OurP is faster than that of OurL due to less matrix

multiplication operation in Equation (14). For CSC and PSC methods, the

kernel matrix of each view has to be calculated, and eigenvalue decomposition

should be conducted for all views in each learning iteration. Compared with

them, the learning of projection matrix of OurL is time consuming, which results320

in a little longer time cost for learning embeddings. Compared with PSLF and

SULF methods, whose time cost are mainly for matrix multiplication operation,

OurP needs more time with the same reason of OurL.

5.5. Parameter selection

In our model, λ1 and λ2 are parameters balancing the view selection and325

feature selection in each view, respectively. From Figure 6, λ1 and λ2 can

be empirically searched in {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} once the

data are normalized and will lead to acceptable results. Apart from the results

conducted on the USPS dataset to validate the selection of λ1 and λ2, we em-

phasize how the performance varies with λ3. From Figure 7, for partial labels,330

there is a large interval to achieve acceptable results, and for partial pairwise

constraints, the interval is relatively small and this is because the absolute value

of such regularizer is larger than that of partial labels and should be carefully

controlled. When applied in real-world applications, it is possible to select these

parameters based on the above suggestions. More advanced improvements will335

be left in the future work discussed in the Conclusion section.

5.6. Discussion

5.6.1. Initialization When Optimizing the Objective

In the proposed optimization strategy as shown in Algorithm 1, we use

random value to initialize the cluster indicator matrix F. However, a better340
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Figure 6: Performance vs. parameters λ1 and λ2 on the USPS dataset with LER being 0.1.
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Figure 7: Performance vs. parameter λ3 on the USPS dataset.

initialization may offer a more suitable starting point, so as to learn a better

first latent space and avoid falling too fast in a bad local optimum. In this

section, we show even a simple kmeans on the concatenated views without semi-

supervised guidance can speed up the convergence. We conduct experiments on

the USPS dataset with the partial labels and links being 0.1, respectively, and345

the results are shown in Figure 8. From the figure, the clustering results with

kmeans initialization become saturated faster than the method with just random

initialization.

Figure 8: kmeans initialization on the cluster indicator matrix.
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5.6.2. Intercept Term in the Objective

In this section, we investigate how the intercept term is related to the clus-350

tering performance, hoping to give a clue for selecting views. More specifically,

we select any two views in a three view dataset, and plot the regression loss

along with its clustering performance. The above loss and performance are

compared with the results utilizing all the three views in the dataset. The in-

tercept loss (curves) along with its NMI performance (values in the legend) on355

the USPS and the 3Source datasets are shown in Figure 9. It can be seen that

the regression loss with the smallest value is always corresponding to the best

performance, which may give a clue on selecting views based the intercept term.

More specifically, a new view that can reduce loss of the intercept term maybe

a good candidate for clustering. More systematic experiments are left in the360

future work due to the limitation of space.

Figure 9: Loss of the intercept term.

6. Conclusion and future work

In this paper, we have proposed a novel multi-view clustering method by

jointly considering feature learning and partially constrained cluster labels learn-

ing. Clustering label is the goal to be optimized, which is directly guided by the365

prior encoding the same high-level semantics. Besides, feature selection is em-

bedded into the above framework for discriminative views and features selection.

To solve the proposed objective, an effective optimization strategy is designed,

especially for optimizing the clustering labels mixed with complete and partial
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constrains. Finally, extensive experiments have validated the effectiveness of370

our model.

In our proposed method, we consider partial labels and partial pairwise

constraints, respectively. If given mixed prior, one possible solution is to change

partial labels to partial pairwise constraints. However, such operation may leads

to performance degeneration due to different regularizers for encoding prior. In375

the future, we may consider jointing different kinds of prior knowledge into

a unified objective to deal with such a scenario. Furthermore, utilization of

feature selection and prior knowledge brings in three parameters to be tuned,

which maybe difficult in real-world applications. We will consider auto-weighted

multi-view learning framework to alleviate the above problem in the future.380
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